
1
 This document will print fine in both A4 and Letter, and in BW or color.

Summary
In April I helped a Fortune 50 company roll out Behavior Driven
Development1 across a multisite enterprise (2-3,000 developers). They’d been
doing Scrum for three years and wanted to roll out an engineering practice
that gives them a better system for tracing requirements from the source to the
functionality via automated test and test results.

I worked with a team on each of their tracks, six Scrum teams. Each team
saw value in the BDD process and is successfully using it today.

Each team
saw value in
the BDD
process and is
successfully
using it today.

BDD ACROSS ENTERPRISE
Behavior Driven
Development

2
 This document will print fine in both A4 and Letter, and in BW or color.

Behavior Driven Development is a requirements communication strategy which as a
side affect, prepares for system test automation similar to Acceptance Test Driven
Development (ATDD). Requirements are expressed by the PO as sets of scenarios,
commonly implemented using the keywords of Given, When, Then.

Background on BDD

Given When Then:

(This app is an iTunes plugin that culls out invalid song entries in a
playlist.)
Given there exists bad entries in playlist Never Played
When trying to play this playlist
Then remove invalid playlist entries

(Read more about this example at:

http://confessionsofanagilecoach.blogspot.com/2013/09/well-written-
behavior-driven.html)

By supplying a Scrum team with a set of behaviors defined in the Given/When/Then
format, the process:

➡ Divides behaviors from implementation details–The team’s PO focuses on
what behavior will serve the end user rather than get bogged down in implementation
details such as what UI widget to use, system architecture, and class level design.
➡ Adds structure–Fuzzy user stories that the developers don’t understand or the PO

doesn’t really understand means that during the sprint they are still trying to decide the
behavior and our level of effort estimates will be of low quality.
➡ Reduces over-engineering or wrong-engineering–By creating an explicit and

finite set of testing scenarios that describe the intended behavior, development knows what
the business wants and is free to design/engineer the implementation that satisfies that
behavior.

http://confessionsofanagilecoach.blogspot.com/2013/09/well-written-behavior-driven.html
http://confessionsofanagilecoach.blogspot.com/2013/09/well-written-behavior-driven.html
http://confessionsofanagilecoach.blogspot.com/2013/09/well-written-behavior-driven.html
http://confessionsofanagilecoach.blogspot.com/2013/09/well-written-behavior-driven.html

3
 This document will print fine in both A4 and Letter, and in BW or color.

During the coaching engagement, teams,
PO, and management noticed the following:

➡ greater understanding of the
work–by having conversations about
scenarios with the development team,
more scenarios were generated to flesh out
requirements which were missed
➡ discussions started at a higher

level–conversations became about getting
the behavior right before spending time on
implementation details (UI
implementation, system architecture, …)
➡ scenarios became a quality gate for User Stories–when the PO worked on

scenarios with her stakeholders, it became clear what behaviors they understood well enough to
define and what other items weren’t ready for Sprint Planning as they needed more followup
with users or marketing

Improvements to
Software Delivery

If the BDD scenarios were used to implement automated tests (rather than only for expressing
requirements), there were further improvements to the development process:

➡BDD’s directly produced artifacts (scenarios) were also used to implement automated
Acceptance Tests (i.e. System tests specifically used to decide when a given feature was finished
moreover operate as automated regression tests.)
➡because the scenarios are understandable by POs, release managers, end users, etc., and are

automated, the collection of BDD scenarios became LIVE documentation about the behaviors
of the system.
➡at release time, it will be easier to communicate what features a product is shipping with as

the scenarios are written in behavioral language that a release manager understands because
it’s devoid of technical implementation details

4
 This document will print fine in both A4 and Letter, and in BW or color.

Program
Operationalization
The client and I put together a fun
and catchy BDD rewards program
that was designed to at least get them
to try it, and had further rewards for
being fully cross functional, and
finally, doing BDD as part of their
Story Definition of Done. The
deadline was set for 4 months after
the first day of coaching.

I worked with an engineering team in
each of their product lines for 8 days:
➡ a few hours of classroom training on what BDD is, how to write scenarios using Given/

When/Then, and some technical slides on implementing the automation.
➡ a few hours to a day working with PO and QA professionals on adding BDD scenarios to

their existing User Stories
➡ a two hour BDD coding dojo with the entire team
➡ daily: pair programed with a team members on creating an automated BDD test for a feature

(User Story) that was on their product backlog for that sprint. I paired with a given team
member until I felt that they “got it” and then I’d switch to another team member. The stretch
goal was to pair with everyone on the team.

Results
Five out of six of the teams I worked
with reached Mini Me during their first
eight-nine days of coaching. The
remaining team reached Min Me in 9
days. (Another team donated a day to
them as they didn’t want to go beyond
Min Me for various reasons.) Three of
the six teams were more than halfway
to Mr. Bigglesworth during the first
eight days.

Because I’m a consultant, the product
I’m delivering is people and processes
they can operate with when I leave. To
see how I did, I checked in four months
later, after the end of the rewards
program. Three teams had reached

Team* Mastery # of tests
team S Mini Me 1061

team VC** Mini Me 1

team I Dr. Evil 60

team F Dr. Evil ***

team T Dr. Evil ***

team NH Mini Me 4

* Listed by order of coaching. Team NH, for example, had only
six weeks before the end of the program.
** This team’s management wanted only one test implemented
to learn the value of BDD. Later, they merged with team NH and
asked a NH team member to be a BDD specialist.

 *** Not known at press time

5
 This document will print in both A4 and Amercian Letter, and in BW or color.

About Lance Kind
He started his first software development project
on a Vic 20 at the age of 10 and his first
“consulting gig” was advising his high school
math teacher how to get the school’s modems
working.

Several years and a BS and MS degree later, he
worked for Hewlett Packard, Microsoft, and then
SolutionsIQ. Software engineering was
beginning to feel dull until 1999 when he started
doing eXtreme Programing under the tutelage of
Kent Beck, and then later, started doing Scrum
+ XP. After delivering several successful projects,
he started consulting and training across many
sectors, from internet startup and social media to
financial, energy, insurance, telecom, and
medical devices.

I had my
doubts
Any new
process,
especially one
that lauds
better
requirements
sounds like
reverting to the
“old days of
BIG upfront
requirements.”
But it was
similar enough
to ATDD to be
worth a try. I
was happy to
see I was
getting a
greater
understanding
of how my
software should
behave.

the Dr. Evil level to the surprise and delight of company management. The remaining
teams were still at Mini Me, meaning they were unable to get every team member
involved with BDD, although were adding BDD tests to their test suite (but not adding
enough to keep up with the rate of producing functionality, which Dr. Evil requires).

By adding a little more
structure (Given/
When/Then) and
focusing on behavior,
BDD takes the value of
regression testing and
testing “done” that
Acceptance Test Driven
Development gave us,
and adds: reduction in
the churn POs have
with their teams due to
coupling UI design with
new behavior, focused stakeholder discussions around behaviors, and a “live” document
that describes the behaviors the application actually can do, (refreshed daily, hourly, or
continuously). No document written on paper, email, or in a spreadsheet has the value of
a BDD scenario automating a test.

The green background in the above report signifies that the test passed. Notice the
GWT is written in easy to understand English.

